Aerodynamic parameter estimation using adaptive unscented Kalman filter

نویسندگان

  • M. Majeed
  • Indra Narayan Kar
چکیده

Purpose – The purpose of this paper is to estimate aerodynamic parameters accurately from flight data in the presence of unknown noise characteristics. Design/methodology/approach – The introduced adaptive filter scheme is composed of two parallel UKFs. At every time-step, the master UKF estimates the states and parameters using the noise covariance obtained by the slave UKF, while the slave UKF estimates the noise covariance using the innovations generated by the master UKF. This real time innovation-based adaptive unscented Kalman filter (UKF) is used to estimate aerodynamic parameters of aircraft in uncertain environment where noise characteristics are drastically changing. Findings – The investigations are initially made on simulated flight data with moderate to high level of process noise and it is shown that all the aerodynamic parameter estimates are accurate. Results are analyzed based on Monte Carlo simulation with 4000 realizations. The efficacy of adaptive UKF in comparison with the other standard Kalman filters on the estimation of accurate flight stability and control derivatives from flight test data in the presence of noise, are also evaluated. It is found that adaptive UKF successfully attains better aerodynamic parameter estimation under the same condition of process noise intensity changes. Research limitations/implications – The presence of process noise complicates parameter estimation severely. Since the non-measurable process noise makes the system stochastic, consequently, it requires a suitable state estimator to propagate the states for online estimation of aircraft aerodynamic parameters from flight data. Originality/value – This is the first paper highlighting the process noise intensity change on real time estimation of flight stability and control parameters using adaptive unscented Kalman filter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doppler and bearing tracking using fuzzy adaptive unscented Kalman filter

The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...

متن کامل

Rotated Unscented Kalman Filter for Two State Nonlinear Systems

In the several past years, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) havebecame basic algorithm for state-variables and parameters estimation of discrete nonlinear systems.The UKF has consistently outperformed for estimation. Sometimes least estimation error doesn't yieldwith UKF for the most nonlinear systems. In this paper, we use a new approach for a two variablestate no...

متن کامل

Adaptive High-Gain observer for joint state and parameter estimation: A comparison to Extended and Unscented Kalman filter

An adaptive High-Gain observer (AHG) as well as an Extended (EKF) and Unscented Kalman filter (UKF) are implemented for joint state and parameter estimation of a novel multi-axial electromagnetically actuated punch. These observers are compared in terms of convergence and response time to erroneous parameter and state initialization, as well as parameter modifications during operation. The AHG ...

متن کامل

New Adaptive UKF Algorithm to Improve the Accuracy of SLAM

SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...

متن کامل

Stator Fault Detection in Induction Machines by Parameter Estimation Using Adaptive Kalman Filter

This paper presents a parametric low differential order model, suitable for mathematically analysis for Induction Machines with faulty stator. An adaptive Kalman filter is proposed for recursively estimating the states and parameters of continuous–time model with discrete measurements for fault detection ends. Typical motor faults as interturn short circuit and increased winding resistance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013